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Abstract. A simple model of aggregation has been used, in its mean-field version, to explain
the observed scaling property of tuna fish school-size distributions (Bonabeau E and Dagorn L
1995Phys. Rev.E 51 5220). This model makes additional predictions when the dimension of
the space in which the fish move is taken into account. In this letter, we identify two cases
where the mean-field assumption, which was justified for free-swimming tuna fish, is no longer
valid. In these two examples, scaling is also observed and the exponent is modified from the
mean-field case in a way predicted by the model.

Grouping is a widespread phenomenon throughout the animal kingdom, that has been
modelled both by biologists [1–5] and physicists [6, 7]. Groups may be more or less
stable [1]. The stability or lack of stability of groups influences the properties of group-size
distributions: species with unstable groups should be characterized by rapidly decreasing
distributions, whereas species with stable groups may in principle be characterized by long-
tailed distributions if there is a sufficiently large reservoir of individuals. Animal group-size
distributions [1–4] have been extensively studied, but the possibility of scaling [7] in such
distributions has been overlooked. There are several possible reasons for this. First, power-
law distributionsN(s) ∝ s−b, whereN(s) is the observed number of groups of sizes,
andb the power-law index, do not have a well-defined mean whenb 6 2—a property that
may appear non-biological. Second, in his influential review, Okubo [1] determined that
any group-size distribution should be exponentially decreasing. He did this by applying a
maximum entropy principle to the distribution, under the constraint of fixed average size,
which implicitly includes the strong assumption that there exists a well-defined mean, and it
is well known to physicists that such a procedure leads to exponential distributions. Third,
long-tailed group-size distributions are necessarily truncated at a cut-off size because the
population is finite, and are ultimately rapidly decreasing for very large sizes, but truncated
power laws must be distinguished from purely rapidly decreasing ones. For example, sums
of power-law distributed random variables exhibit hyperslow convergence to the normal
distribution [8]. Note that the existence of a cut-off size implies that there eventually exists
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an average size, even forb 6 2, but that this average size is very different from thetypical
size.

If the possibility of power laws in animal group-size distributions has been overlooked
by biologists, scaling has been known to be present in cluster-size distributions obtained
from physical models of aggregation–fragmentation [9, 10]. Motivated by the observation
of power-law size distributions with an index close tob = 1.5 in tropical tuna fish schools
[7], we have previously proposed a simple mean-field model of aggregation [7, 9], arguably
the simplest possible model, to account for the observation: namely, that fish schools be
considered as particles that move between sites and aggregate when they meet. Let us
briefly sketch how the exponentb = 1.5 is obtained. We assume that the simulated fish can
hop from site to site and thatm fish swimming together form anm-school. At each discrete
time step, all schools move towards a randomly selected site (allN sites are selected
with equal probability). When anm-school and anh-school hop to the same site, they
aggregate to form an(m+ h)-school. When fish are regularly injected into the system, this
simple aggregation process leads to a stationary power-law distribution. Let us introduce the
characteristic functionZ1(ρ, t) of the size distributionD(s) at timet , Z1(ρ, t) ≡ 〈exp[iρs]〉,
where 〈. . .〉 denotes the average over all possible realizations of the aggregation process.
We obtainZ1(ρ, t + 1) = 8(ρ)eZ1(ρ,t)−1, where8(ρ) is the characteristic function of the
injection random variableI . Each site has a different realization of the same injection
variable I . The detailed derivation can be found in [7, 9].8(ρ) can be expanded as
8(ρ) = 1+ i〈I 〉ρ − (〈I 2〉ρ2/2)+ · · ·, where〈I 〉 and 〈I 2〉 are the first two moments ofI .
In the stationary state,Z1(ρ) satisfiesZ1(ρ) = 8(ρ)eZ1(ρ)−1. Taking the limitN → ∞,
one obtains the steady-state characteristic functionZ1(ρ) = 1−√2〈I 〉1/2|ρ|1/2i−1/2 + · · ·,
so that the size distribution satisfiesD(s) ∝ s−3/2 for large enoughs (s � 〈I 〉). Figure 1
shows the number of aggregatesN(s) of size s obtained from a simulation in which one
new size-one individual is injected into the system at every time step.

If the injection process is replaced by school-splitting and the reinjection of individuals
that have left their schools, while keeping the total number of individuals fixed, one obtains
a truncated power law with the same exponent, up to a cut-off size that depends, among
other things, on the timescale of splitting [7]. To see how a cut-off size appears, let us
assume thatn is constant over time, that a fractionp of each group is separated from
the group at every time step, and that the correspondingpn individuals are reinjected by
being randomly redistributed among theN sites. The expectation of the injection ispn/N .
The characteristic function is now given byZ1(ρ, t + 1) = 8((1 − p)ρ)eZ1((1−p)ρ,t)−1,
so thatZ1(ρ) = 1− i〈s ′〉ρ + · · ·: the size distribution is short-ranged with a finite mean
〈s ′〉 = (1− p)n/N . Although the size distribution now has a characteristic scale, it retains
its power-law characteristics up to the cut-off size, as can be seen on figure 2. Figure 2
also shows the size distribution of schools of freely swimming tuna fish (in which three
species, yellowfin tunaThunnus albacares, skipjack tunaKatsuwonus pelamis, and bigeye
tunaThunnus obesusare mixed) [7]. The similarity between the empirical distribution and
the distribution obtained from the model is striking. In order to fit the empirical distribution,
we examine fitting functions of the typeN(s) ∝ as−bf (s/sc), with f (x) = e−x

c

, where
a, b, c and sc are four fitting parameters andf is a crossover function from power-law to
exponential decay. For simplicity, we restrict our attention to 16 c 6 2. We find that the
best fit is given bya = 3497,b = 1.49, c = 2, sc = 29.7 for free tuna (dotted curve in
figure 2). Theb exponent,b = 1.49, is quite close to the mean-field predictionb = 1.5.

This model not only produces a power-law indexb = 3
2 in its mean-field version [7, 9], in

which schools can move from any site to any other site; it also generates several predictions
which may be important for our understanding of fish schools. For example, depending on
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Figure 1. Log–log plot ofN(s) versuss, whereN(s) is the number of aggregates of sizes
obtained in the mean-field simulation after 8× 104 time steps. Simulation withN = 100 000
sites. One individual of size one is injected into the system at a randomly selected site at each
time step.

environmental conditions, the stability of groups of a given species may vary: for instance,
the lack of food may reduce group stability [11]. If the group-size distribution is a power
law, and if the model is relevant to explain the origin of the power law, then we expect such
factors to affect the cut-off size but not necessarily the power indexb [7]. The data obtained
from catches by purse seiners is consistent with this prediction, sinceb is relatively robust
over the years while the cut-off size varies [7]. This indicates that the overall shape of the
distribution may result from a simple underlying aggregation mechanism, whereas the cut-
off size results from fluctuating environmental conditions or variable individual behaviour.
It is tempting to think that the model does explain the origin of the observed power-law
distribution, all the more as it exhibits robust scaling (that is, scaling with a similar exponent)
when various features are included [7, 9]. Notice, however, that although we use the model
described in [9] (mostly because its simple formulation directly applies to our problem),
other related models of coagulation–fragmentation, based on a Smoluchowski rate equation
including a break-up kernel, are also available with comparable predictions [10].

Let us now examine additional predictions of the model related to the ‘effective’
dimensiond of the space in which the fish move. By effective dimension, we mean that,
although the ocean is three-dimensional, fish may not use the whole ocean and may, for
instance, be constrained to swim along the coasts, or, alternatively, may move so quickly
from one location to another that space is irrelevant. This latter constraint, which can, to a
large extent, apply to freely swimming tuna fish, corresponds to the mean-field version of the
aggregation model which leads tob = 3

2 whereas the empirical distribution givesb = 1.49
(figure 2). The critical dimension of the model is between four and five [9]. An exact result
can be obtained ford = 1: b = 4

3. For other dimensions, simulations (the results of which
are reported in [9]) indicate thatb = 1.465±0.003 ford = 2; b = 1.491±0.007 ford = 3;



L734 Letter to the Editor

Figure 2. Crosses represent the school-size distribution of free swimming tuna fish (yellowfin
tuna, skipjack tuna, bigeye tuna). The dotted curve corresponds to a fit of the typeas−be−(s/sc)c ,
with a = 3497,b = 1.49, c = 2, sc = 29.7. The full curve has been obtained from simulation
of the mean-field model after 106 time steps, withN = 100 000 sites,n = 80 000 individuals,
p = 0.1. All individuals are initially present and randomly distributed among sites.

and b = 1.496± 0.010 for d = 4. As a general trend,b increases whend increases for
d < 5. Therefore, we expect species for which the effective dimension is less than three to
be characterized byb < 3

2.
We have identified two cases in which the effective dimension may be less than three:

(1) tuna fish in the presence of a fish aggregating device (FAD), which can be a drifting log
or an artificial device designed to attract fish, and (2) some species of sardinellas (family
of sardines—Sardinella maderensisand Sardinella aurita), which do not make full use of
the three-dimensional oceanic space. In example (1) it can be argued that the effective
dimension is less than one because the FAD is a point. In example (2) the effective
dimension lies between one and two because sardinellas tend to swim along the coast (at a
distance limited to at most 10 times the width of the continental plateau)—which reduces
the effective dimension by one—where water depth is smaller than far from the coast, which
further reduces the effective dimension by an unknown factor. Figures 3 and 4 show the
school-size distributions of, respectively, tuna fish caught in the vicinity of a FAD [12]
(figure 3) and sardinellas caught in the up-welling areas of the west African coast (figure 4).
The best fits (of the typeas−be−(s/sc)

x

, c = 1, 2) are also represented for these distributions:
• a = 1113.3, b = 0.698, c = 1, sc = 3.72 for tuna caught in the vicinity of a FAD

(figure 3),
• a = 503,b = 0.95, c = 2, sc = 59.8 for sardinellas (figure 4).
We observe that, although the exponentsb are not exactly those of the model, there

is a clear decrease ofb with effective space dimension (b = 1.49 for freely swimming
tuna fish,b = 0.95 for sardinellas, andb = 0.698 for tuna fish caught in the vicinity of
a FAD), consistent with the model’s general prediction. So, despite several factors that
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Figure 3. School-size distribution of tuna fish caught in the vicinity of a FAD. The dotted curve
corresponds to a fit of the typeas−be−(s/sc)c , with a = 1113.3, b = 0.698, c = 1, sc = 3.72.

Figure 4. School-size distribution of sardinellas caught in the up-welling areas of the west
African coast. The dotted curve corresponds to a fit of the typeas−be−(s/sc)c , with a = 503,
b = 0.95, c = 2, sc = 59.8.

many bias school-size estimates (the whole school is not always caught, especially if it is
large; fishermen sometimes do not wish to catch small schools; several species are often
mixed in schools; and school sizes are measured by weight not number) and despite the
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lack of accurate quantitative estimates of dimensional reduction, the remarkable consistency
between these results and the model’s prediction is strong evidence that the simple model
of aggregation contains some of the essential ingredients of fish schooling behaviour that
influence school size. Moreover, the reportedb = 1.2 exponent for herds of the African
buffalo (Syncerus caffer) [7, 13], whose movements take place in a two-dimensional space,
reinforces this interpretation and suggests that the model can apply to terrestrial animals as
well.

EB is supported by the Interval Research Fellowship at the Santa Fe Institute. We gratefully
acknowledge support from the CRODT Senegal for the catch data.
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